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ABSTRACT
On-demand delivery is a new form of logistics where customers
place orders through online platforms and the platform arranges
couriers to deliver them within a short time. The acquisition of
indoor status (i.e., arrival or departure at the merchants) of couriers
plays an important role in order dispatching and route planning.
The Bluetooth Low Energy (BLE) device is a promising solution for
city-wide indoor status estimation due to the low hardware and
deployment costs and low power consumption. However, the envi-
ronment and smartphone model heterogeneities affect the status
characteristics contained in the Bluetooth signal, resulting in the
decline of status estimation performance. The previous methods to
alleviate the heterogeneity are not suitable for city-wide scenarios
with thousands of merchants and hundreds of smartphone models.
In this paper, we propose Para-Pred, an indoor status estimation
framework based on the graph neural network, which directly
Predicts the effective indoor status estimation model Parameters
for unseen scenarios. Our key idea is to utilize similarity between
the influence patterns of heterogeneities on the Bluetooth signal
to directly infer unseen scenarios’ influence patterns. We evaluate
the Para-Pred on 109,378 couriers with 672 smartphone models in
12,109 merchants from an on-demand delivery company. The evalu-
ation results show that across environment and smartphone model
heterogeneities, the accuracy and recall of our method achieve
93.62% and 95.20%, outperforming state-of-the-art solutions.

CCS CONCEPTS
• Information systems → Data mining.

KEYWORDS
Indoor Status Estimation, Wireless Sensing, Graph Neural Network

∗Both authors contributed equally to this research.
†Shuai Wang is the corresponding author.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
KDD ’22, August 14–18, 2022, Washington, DC, USA
© 2022 Association for Computing Machinery.
ACM ISBN 978-1-4503-9385-0/22/08. . . $15.00
https://doi.org/10.1145/3534678.3539167

ACM Reference Format:
Wei Liu, Yi Ding, Shuai Wang, Yu Yang, and Desheng Zhang. 2022. Para-
Pred: Addressing Heterogeneity for City-Wide Indoor Status Estimation in
On-Demand Delivery. In Proceedings of the 28th ACM SIGKDD Conference
on Knowledge Discovery and Data Mining (KDD ’22), August 14–18, 2022,
Washington, DC, USA. ACM, New York, NY, USA, 11 pages. https://doi.org/
10.1145/3534678.3539167

1 INTRODUCTION
On-demand delivery service is a new logistics delivery service
model born in response to the Online-To-Offline Business Model
(O2O). With the continuous growth of the market, many online
platforms have emerged in recent years [14, 25]. In these platforms,
to fulfill customers’ needs, couriers deliver online orders (e.g., fresh
food) from merchants (e.g., supermarkets, restaurants, etc.) to cus-
tomers in a short time (e.g., 30 minutes). To make in-time delivery,
it is crucial for platforms to know accurate couriers’ status (i.e.,
arrival and departure) at merchants, which is utilized to (1) update
order status in customer’s APPs for better customer experience [9],
(2) assign new orders to the most suitable couriers (e.g., nearby
couriers) [31], and (3) train learning models to estimate the order’s
preparing and delivery time for future orders [35].

These are many existing works related to couriers’ or humans’
status detection based on techniques such as Wi-Fi [17], Bluetooth
Low Energy [8, 11, 19], RFID [28], and LED lights [29]. Among
all these techniques, Bluetooth Low Energy (BLE) beacons turn
to be a promising solution for indoor status estimation in large-
scale scenarios where physical beacons are deployed to broadcast
Bluetooth signals and nearby receivers such as smartphones re-
ceive the signals. It has three key advantages. (1) Low cost: Each
beacon costs no more than $10 [9]. (2) Energy efficiency: Contin-
uous scanning in BLE only introduces less than 2% extra power
consumption on couriers’ smartphones [9], which is much less than
Wi-Fi [6]; (3) No modification: No hardware modification is needed
on the courier end. Because of these advantages, more and more
BLE beacon systems are deployed in real-world. For example, an
industrial BLE beacon system called aBeacon [9, 10] was deployed
in Shanghai to infer couriers’ arrival and departure status at the
merchants given previously-mapped beacon-merchant pairs in the
deployment, where low-cost ($ 8) advertising-only BLE beacons
were deployed in 12,109 merchants.

In a controlled environment such as labs, using BLE devices
to estimate arrival and departure status is straightforward. How-
ever, it has been observed that many factors in the wild impact
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the performance of the BLE-based beacon system. First, a small
variation in the hardware and software of smartphones may cause
significant heterogeneity in the collected sensor data. That is, dif-
ferent smartphones respond differently even to the same status [7].
Second, the propagation path of Bluetooth signals is impacted by
locations where beacon devices are deployed and surrounding en-
vironments [5]. These factors affect Bluetooth signals in different
ways simultaneously, which lead to varied collected data from
smartphones, even for the same smartphone and the same status.
Thus, it is very challenging to use an indoor status estimation model
trained with data from one scenario directly in other scenarios due
to the heterogeneity.

Some approaches have been proposed to address the environ-
ment and smartphone model heterogeneities. For the smartphone
model heterogeneity, conventional solutions utilize reliable but
expensive sensors, which are not suitable for large-scale deploy-
ment. Furthermore, researchers apply deep neural network to learn
the awareness of smartphone model heterogeneity [18, 22]. For
the environment heterogeneity, recent solutions leverage trans-
fer learning [26, 34] or adversarial learning [15, 33] to suppress
the influence of environment heterogeneity on recognition tasks.
These methods are difficult to be applied in city-wide scenarios
with thousands of merchants and hundreds of smartphone models
(e.g., 12,109 merchants and 672 smartphone models in our study),
which require to re-collect a large amount of labeled data or re-train
models when dealing with new scenarios.

To alleviate the environment and smartphone model hetero-
geneities in large-scale scenarios, we aim to design an indoor status
estimation framework without new scenarios’ data and model re-
training. We explore the following two opportunities. (i) For smart-
phone model heterogeneity, couriers with different smartphones
pick up orders in the same merchant, which naturally provide a
scenario that a large number of heterogeneous smartphones de-
tect signals transmitted by the same beacon. (ii) For environment
heterogeneity, couriers with smartphones of a certain model pick
up orders at different merchants, which results in the detection of
signals transmitted from a great number of heterogeneous environ-
ments with same-model smartphones. In this way, the influence of
heterogeneities is patterned and hidden in the interactive sensor
data. Then our goal is to mine the influence patterns of different
environments and smartphone models from the interactive data,
which can be used to predict the impact of the environments and
smartphone models at unseen scenarios based on the similarity
between influence patterns.

Considering the opportunities, solving the large-scale indoor
status estimation problem still faces the following challenges. First,
there is no clear metric to quantify the influence patterns of hetero-
geneities on Bluetooth signals. The similarity between the influence
patterns of the heterogeneities is not explicit, which has to be dis-
covered from interactive historical sensor data, rather than being
provided as ground truth knowledge. Second, how to combine the
similarity to model the complex heterogeneities to predict its in-
fluence patterns on unseen scenarios is challenging. Meanwhile,
the degree of similarity is different and it is not straightforward to
distinguish similarities with heterogeneous strengths.

In this work, we propose Para-Pred, an indoor status estima-
tion framework based on graph neural networks to address these

challenges. We first construct a shop-phone interaction graph con-
sidering shops and smartphone models as nodes, and historical
Bluetooth signal data as edge information, to learn the influence
patterns of the heterogeneities by the environment heterogene-
ity model and smartphone heterogeneity model. Then, based on
the similarity between these influence patterns, we construct a
shop-shop similarity graph and a phone-phone similarity graph.
We design a parameters prediction module based on the similarity
between the influence patterns of the heterogeneities to predict
the indoor status estimation model parameters for unseen scenar-
ios. Finally, we obtain the effective status estimation models for
unseen scenarios which can be used directly for accurate status
estimation without additional data collection and model retraining.
In summary, our key contributions are as follows:

• To the best of our knowledge, we are the first to employ
an indoor status estimation system based on the similar-
ity information to address environment and smartphone
model heterogeneities for city-wide scenarios. Based on the
similarity information between influence patterns of the het-
erogeneities, we directly infer the effective indoor status
estimation model for unseen scenarios without additional
data collection and model retraining.

• To address the similarity information ambiguity, we design
the similarity extraction module to capture the influence
patterns of different environments and smartphone models
and explore the potential similarity information. To predict
the influence patterns for unseen scenarios, we design the
parameter prediction module that effectively combines the
similarity information to predict accurate status estimation
models for unseen scenarios. Meanwhile, we design the at-
tention mechanisms to model the heterogeneous strengths
of different similarities.

• We evaluate Para-Pred on a real-world industrial BLE bea-
con system including 109,378 couriers with 672 smartphone
models in 12,109 merchants from one of the largest O2O
platforms, i.e., Eleme. Experiments show that we outperform
the accuracy, recall, precision, and F1-score of the state-of-
the-art methods by 11.87%, 14.54%, 10.33%, and 12.27%, re-
spectively. In addition, we analyze the effectiveness of the
similarity extraction module and the attention mechanisms.
We also study the performance sensitivity of our system to
different shop types and smartphone models. The results
show that these designs improve the overall system perfor-
mance and our model is robust for different shop types and
smartphone models. We will release one month of our data
for the benefits of the research community.

2 MOTIVATION AND OPPOTUNITY
2.1 Motivation
The indoor status estimation is of great significance for on-demand
delivery, since couriers spend almost one-third of total working
time in the indoor scene [31]. For a BLE-based indoor sensing sys-
tem,Bluetooth signals received by couriers will be affected by many
factors in the wild. Para-Pred addresses the problem of indoor status
estimation performance degradation caused by environment and
smartphone model heterogeneities. In the following, we introduce

 

3408



Para-Pred: Addressing Heterogeneity for City-Wide Indoor Status Estimation in On-Demand Delivery KDD ’22, August 14–18, 2022, Washington, DC, USA

0 200 400 600 800
DTW Distance

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Same shop
Different shop

(a)

50 150 250 350
DTW Distance

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

Same phone
Different phone

(b)
Figure 1: The Bluetooth signal patterns for different shops (a), and
for different smartphones (b).

the impact of the heterogeneities on received signal strength indi-
cation (RSSI) of Bluetooth and the performance of the traditional
status estimation model.

2.1.1 The impact on original Bluetooth signal data. To reflect the
impact of heterogeneities on original Bluetooth signals, we utilize
the dynamic time warping (DTW) distance to quantify the impact
of the heterogeneities. DTW is a common algorithm to calculate
the similarity between different length time series. The larger the
DTW distance is, the less similar two time series are. We calculate
the DTW distance between each pair of measurements collected in
the same shop and different shops. The DTW cumulative distribu-
tion function (CDF) in Fig. 1a shows that the measured samples in
the same shop are more similar than those measured in different
shops. Similarly, Fig. 1b indicates that the samples detected by the
same smartphone model are more similar than those detected by
different smartphone models. They suggest that environment and
smartphone models have a great impact on Bluetooth signals.

2.1.2 The impact on the status estimation model performance. To
further reflect the impact of heterogeneities, we test the perfor-
mance of the indoor arrival status estimation model based on CNN-
LSTM [32] across different environments and different smartphone
models. Data collected by phone1 in shop1 are used as the train-
ing dataset and three groups of data collected by phone1 in shop1,
phone2 in shop1 and phone1 in shop2 are used as testing datasets.
We use 5-fold cross-validation to split training and testing datasets,
and compare the average accuracy and recall. Fig. 2 shows that for
the smartphone model that is unseen in the training process, the
accuracy dropped from 91.25% to 75%, and the recall dropped from
95.83% to 73.61%. For the unseen shop, the accuracy of the status
estimation model drops to 71.19%, and the recall drops to 79.27%.
These results emphasize the significant influence of environment
and smartphone model heterogeneities on the performance of the
status estimation model.

2.2 Opportunity
We find that large-scale on-demand delivery platform naturally pro-
vides interactive data which contains rich heterogeneities knowl-
edge. There are usually a large number of couriers with different
smartphone models to pick up orders in many different shops. So
we obtain the Bluetooth interactive sensing data which contain the
influence patterns of the heterogeneities.

The different distributions of sensor data reflect the influence
patterns of different environments and smartphone models on Blue-
tooth data. As shown in Fig. 3, we analyze the distribution of Blue-
tooth signals detected by three different smartphone models in the
same shop during the same courier’s pickup time. The results show
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Figure 2: The perfor-
mance of the tradi-
tional status estima-
tion model.
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that data distributions of phone1 and phone2 of the same brand are
more similar than that of phone3 of another brand. Similarly, we
analyze the Bluetooth signal distribution of the same smartphone
model in three different shops. As shown in Fig. 4, we find that the
data distributions of shop1 and shop2 of the same type (i.e.milk tea)
are more similar than that of another type of shop3. It shows that
there are similarities between the influence patterns of different
smartphone models and between the influence patterns of different
environments. Furthermore, for target domains for which we can-
not train effective status estimation models due to the lack of data,
we have the opportunity to use the similarity between influence
patterns of source domains which have sufficient data to infer the
status estimation model parameters of the target domain without
extra data collection.
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tion Model 
Parameters

Smartphone 
Attribute

Shop-Phone 
Interaction 

Graph

Shop-Phone 
Parameter Graph

Parameters 
Prediction Model

Indoor Status 
Estimation Mo-
del Parameters 
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Module (Section 4.2)

Indoor Status 
Estimation Model

Source Domain
Parameters  Prediction Module Data Processing Module (Section 4.1)

Bluetooth Signals Smartphone   
Heterogeneity Model

Environment 
Heterogeneity Model

(Section 4.3)

Figure 5: Framework of the Para-Pred.

3 SYSTEM & DEFINITION
3.1 System Framework
In this section, we introduce the Para-Pred framework to address
the challenges mentioned in Section 1. First, we need to dig out the
influence patterns of different environments and different smart-
phone models from a large amount of interactive sensor data, and
then effectively utilize the similarity between influence patterns to
predict the status estimation model parameters for the target do-
mains, which are directly used for accurate status estimation. And
we model the contributions of different similarities. Considering
the above goals, we design the model framework as shown in Fig. 5,
which consists of the following three modules.
Data Processing Module. This module prepares data for graph
construction. First, original Bluetooth signals are processed into a
suitable form as the edge attribute of the shop-phone interaction
graph. Then we train the status estimation models for source do-
mains with labeled data, and the model parameters are taken as the
edge attribute of the shop-phone parameter graph. The details can
be found in Section 4.1.
Similarity Extraction Module. The purpose of this module is to
learn the similarity between influence patterns of environments
and between influence patterns of smartphone models on Blue-
tooth signals. First, we build a shop-phone interaction graph 𝐺 to
learn latent factors of smartphone model nodes and shop nodes
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that contain the influence patterns of heterogeneities through the
environment heterogeneity model and smartphone heterogene-
ity model. Then we construct the shop-shop similarity graph and
phone-phone similarity graph according to the similarity between
smartphone model latent factors and between shop latent factors.
The details can be found in Section 4.2. For brevity, a smartphone in
this paper represents a concrete smartphone model, e.g., Samsung
Galaxy S22.
Parameters Prediction Module.We first learn effective indoor
status estimation models for source domains and construct the
shop-phone parameters graph based on the indoor status estimation
model parameters 𝑇 . Then we inherently combine 𝑇 and similarity
graphs𝐺𝑠 and𝐺𝑝 to predict the status estimation model parameters
for the target domains. The details can be found in Section 4.3.

3.2 Problem Definition and Notations
Definition1: Indoor Status Estimation Model Parameters. We
utilize the CNN-LSTM as the indoor status estimation model to
estimate the probability of arrival and departure at every time
clip, which consists of one-layer CNN, one-layer LSTM, and a fully
connected layer. The input is the RSSI time series, and the output
is the predicted probability of the arrival or departure status. For
the source domain with sufficient labeled data, we obtain the status
estimation model parameters by training. In section 5.2.6, we verify
that our status estimation model structure is sufficient for status
estimation.
Definition2: Shop-Phone Interaction Graph.We define a shop-
phone interaction graph 𝐺 = (𝑈 ,𝑉 , 𝐸), to learn the latent factors
representing the influence patterns for each shop and smartphone
model. 𝑈 and 𝑉 are the sets of shops and smartphone models re-
spectively. 𝐸 ⊆ 𝑈 ×𝑉 is the set of interactive edges, and the edge
𝐸 (𝑢𝑖 , 𝑣 𝑗 ) denotes there are history detection records between shop
𝑢𝑖 and smartphone model 𝑣 𝑗 .
Definition3: Similarity Graph. We define that 𝐺𝑠 = (𝑈 , 𝐸𝑠 ) and
𝐺𝑝 = (𝑉 , 𝐸𝑝 ) are the shop-shop similarity graph and the phone-
phone similarity graph, respectively, where 𝐸𝑠 (𝑢𝑖 , 𝑢 𝑗 ) = 1 if the
similarity of the latent factors of 𝑢𝑖 and 𝑢 𝑗 which obtained in shop-
phone interaction graph is greater than the threshold 𝜖 , similarly
for 𝐸𝑝 (𝑣𝑖 , 𝑣 𝑗 ) = 1
Definition4: Shop-Phone Parameters Graph. We utilize shop-
phone parameters graph𝑇 = (𝑈 ,𝑉 , 𝐸𝑡 ) to predict status estimation
model parameters for target domains, where 𝐸𝑡 ⊆ 𝑈 ×𝑉 represents
the set of parameters edges, and the edge 𝐸𝑡 (𝑢𝑖 , 𝑣 𝑗 ) denotes there
are status estimation model parameters of the source domain (i.e.
smartphone model 𝑣 𝑗 in shop 𝑢𝑖 ) obtained by training.

We aim to utilize (1) the similarity between the influence pat-
terns of environments and (2) the similarity between the influence
patterns of smartphone models to predict the effective indoor status
estimation model parameters for target domains. Then the status
estimation models composed of prediction parameters can be di-
rectly used for status estimation in unseen scenarios. Formally, the
problem is defined as: 𝑒𝑡

𝑖 𝑗
= 𝐹𝜃 (𝐺,𝑇 ). We input interaction graph

𝐺 and parameters graph 𝑇 to learn a model 𝐹𝜃 that can predict the
status estimation model parameters 𝑒𝑡

𝑖 𝑗
for unseen scenarios (e.g.,

smartphone model 𝑣 𝑗 in shop 𝑢𝑖 ). Then we input the RSSI time
series 𝑟𝑖 𝑗 detected by smartphone model 𝑣 𝑗 in shop 𝑢𝑖 to the status
estimation model (i.e., parameters 𝑒𝑡

𝑖 𝑗
) to predict status probability

of 𝑟𝑖 𝑗 described as 𝑦′ = 𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀 (𝑟𝑖 𝑗 ; 𝑒𝑡𝑖 𝑗 ). Training is a one-off
cost performed off-line, and the learned model parameters 𝑒𝑡

𝑖 𝑗
can

be used for unseen scenarios without incurring extra training. The
mathematical notations are shown in Appendix A.1.

4 DESIGN OF PARA-PRED
In this section, we detail each model component and describe the
design of loss function and the training method.

4.1 Data Processing Module
First, due to the packet loss in the process of data collection, we
interpolate the RSSI time series and utilize the Kalman filter [23]
to remove the abnormal values. To process the data into the form
required by the shop-phone interaction graph𝐺 , we utilize DTW to
align all RSSI time-series detected by the same smartphone model
in the same shop during pickup time. Then, we calculate the mean
vector 𝑒𝑖 𝑗 = 1

𝐿

∑𝐿
𝑙=1 𝑟𝑙 as the attribute of 𝐸, where 𝑟𝑙 is the lth his-

torical Bluetooth signal time-series detected by smartphone model
𝑣 𝑗 in shop 𝑢𝑖 , 𝐿 is the number of time series.

To obtain the indoor status estimation model parameters of
source domains for shop-phone parameters graph construction,
we divide the preprocessed time series into a set of sliding win-
dows whose length is m (12 in Para-Pred) with 50% overlap and
input them to the indoor status estimation model. After training,
we obtain the status estimation model parameters 𝑒𝑡

𝑖 𝑗
for smart-

phone model 𝑣 𝑗 and shop𝑢𝑖 as the attribute of 𝐸𝑡 of the shop-phone
parameters graph. In addition, the shop attribute dataset includes
the information of shop latitude, longitude, and main category,
which capture the common attribution of shops. And the smart-
phone model attribute dataset includes the smartphone model and
smartphone OS types.
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Figure 6: Structure of Similarity Extraction Module.

4.2 Similarity Extraction Module
The similarity extraction module aims to learn the influence pat-
terns of heterogeneities from historical interaction data and obtain
the similarity between the influence patterns of environments and
between the influence patterns of smartphone models. We define
the shop-phone interaction graph 𝐺 and utilize the environment
heterogeneity model and smartphone heterogeneity model to learn
latent factors of shop and smartphone model nodes that contain
their influence patterns and output the shop-shop similarity graph
𝐺𝑠 and phone-phone similarity graph 𝐺𝑝 as shown in Fig. 6. Next,
we introduce the environment heterogeneity model, phone hetero-
geneity model, and how to obtain the similarity graphs in detail.
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4.2.1 Environment Heterogeneity Model. This model aims to learn
shop latent factors which are utilized to model the influence pat-
terns of shops, denoted as ℎ𝑖 ∈ 𝑅𝑑 for shop 𝑢𝑖 . The edge attribute
𝑒𝑖 𝑗 ∈ 𝑅1×𝑓 of shop-phone interaction graph 𝐺 are generated from
the historical Bluetooth signal time series of smartphone model 𝑣 𝑗
in shop 𝑢𝑖 , which contains the influence patterns of environment
heterogeneity. Graph structure also contains rich interactive in-
formation between shops and smartphone models. So we jointly
capture interactions and historical sensing data to further learn
shop latent factors ℎ𝑖 .

To consider the different contributions of neighbor smartphone
model nodes to the shop node in the process of aggregating infor-
mation, we introduce the attention mechanism based on edge and
node attributes. The contribution of the smartphone neighbor 𝑣𝑥
to the shop 𝑢𝑖 is computed as follows:

𝛼∗𝑖𝑥 = 𝜎 (𝑊 · [{𝑔𝑖𝑥 ,∀𝑥 ∈ 𝑃 (𝑖)} ∥ 𝑠𝑖 ] + 𝑏) (1)
where𝑊 and 𝑏 are the weight and bias of a neural network, ∥ de-

notes the concatenate operation, 𝜎 denotes the activation function,
𝑠𝑖 is the attribute of shop 𝑢𝑖 , 𝑃 (𝑖) represents the set of neighbor
smartphone model nodes interacted with shop𝑢𝑖 , 𝑔𝑖𝑥 is the pattern-
aware interaction embedding of smartphonemodel 𝑣𝑥 which jointly
capture the interaction information and influence pattern.

To model the 𝑔𝑖𝑥 , firstly, we introduce a pattern edge embed-
ding𝑚𝑖𝑥 to model the influence pattern of shop 𝑢𝑖 by inputting
the edge attribute 𝑒𝑖𝑥 to a 1D convolutional neural network (1D-
CNN) 𝜙𝑚 , i.e.,𝑚𝑖𝑥 = 𝜙𝑚 (𝑒𝑖𝑥 ). Then, we feed the combination of
the𝑚𝑖𝑥 and the smartphone model 𝑣𝑥 ’s attribute 𝑝𝑥 into a Multi-
Layer Perceptron (MLP) 𝜙𝑣 : 𝑔𝑖𝑥 = 𝜙𝑣 ( [𝑚𝑖𝑥 | |𝑝𝑥 ]). To make the
contribution coefficients easy to compare among different neigh-
bors of shop 𝑢𝑖 , we utilize softmax function to standardize them
as 𝛼𝑖𝑥 =

𝑒𝑥𝑝 (𝛼∗
𝑖𝑥 )∑

𝑥∈𝑃 (𝑖 ) 𝑒𝑥𝑝 (𝛼∗
𝑖𝑥
) . Then, the shop 𝑢𝑖 ’s latent factor ℎ𝑖 is ag-

gregated by the smartphone neighbor’s pattern-aware interaction
embeddings and contribution coefficients, which is defined as:

ℎ𝑖 = 𝜎 (𝑊 ·


∑︁
𝑥 ∈𝑃 (𝑖)

𝛼𝑖𝑥𝑔𝑖𝑥

 + 𝑏) (2)

4.2.2 Smartphone Heterogeneity Model. This model aims to learn
smartphone model latent factors 𝑧 𝑗 ∈ 𝑅𝑑 which reflect the influence
patterns of smartphone model 𝑣 𝑗 . Shop-phone interaction graph
𝐺 includes abundant interactive sensing data which contains the
influence pattern of smartphone models on Bluetooth signals from
different shop perspectives. Therefore, interactive information and
sensing data should be considered together to learn smartphone
model latent factors.

Similarly, we aggregate the pattern-aware interaction embed-
ding of shops interacting with smartphone model 𝑣 𝑗 to learn the
smartphone model latent factor 𝑧 𝑗 based on attention mechanisms.
To mathematically represent the aggregation process, we utilize
the following function: 𝑧 𝑗 = 𝜎 (𝑊 ·

{∑
𝑜∈𝑆 ( 𝑗) 𝛽 𝑗𝑜𝑎 𝑗𝑜

}
+ 𝑏), where

𝑆 ( 𝑗) is a set of neighbor shop nodes interacted with smartphone
model 𝑣 𝑗 , 𝑎 𝑗𝑜 is a pattern-aware interaction shop embedding which
is obtained by inputting the pattern embedding𝑚 𝑗𝑜 and shop 𝑢𝑜 ’s
attribute 𝑠𝑜 into a MLP 𝜙𝑢 , i.e. 𝑎 𝑗𝑜 = 𝜙𝑢 ( [𝑚 𝑗𝑜 | |𝑠𝑜 ]).

We consider the pattern-aware interaction shop embedding and
the smartphone model 𝑣 𝑗 ’s attribute 𝑝 𝑗 to learn the contribution co-
efficient 𝛽 𝑗𝑜 for neighbor shop𝑢𝑜 , as below, 𝛽∗𝑗𝑜 = 𝜎 (𝑊 · [{𝑎 𝑗𝑜 ,∀𝑜 ∈

𝑆 ( 𝑗)}| |𝑝 𝑗 ] + 𝑏), 𝛽 𝑗𝑜 =
𝑒𝑥𝑝 (𝛽 𝑗𝑜

∗)∑
𝑜∈𝑆 ( 𝑗 ) 𝑒𝑥𝑝 (𝛽∗𝑗𝑜 )

.

4.2.3 Obtain the latent factors of shops and smartphone models. To
learn the latent factors of shops and smartphone models, which
contain the influence patterns of heterogeneities from shop-phone
interaction graph𝐺 , we first concatenate the latent factors of shop
𝑢𝑖 and phone 𝑣 𝑗 (i.e., ℎ𝑖 and 𝑧 𝑗 ) and then put them into MLP to
reconstruct edge attributes, i.e., 𝑒 (𝑘)

𝑖 𝑗
= 𝜎 (𝑊 (𝑘) · 𝑒 (𝑘−1)

𝑖 𝑗
+ 𝑏 (𝑘) ),

where 𝑒 (0)
𝑖 𝑗

= [ℎ𝑖 | |𝑧 𝑗 ], 𝑘 is the index of a hidden layer. We consider
the output of the last layer as the reconstruct edge attributes, i.e.,
𝑒𝑖 𝑗 = 𝑒

(𝑘)
𝑖 𝑗

. Then we construct the following loss function:

𝐿𝑟 =
1
|𝑄 |

∑︁
𝑖, 𝑗 ∈𝑄



𝑒𝑖 𝑗 − 𝑒𝑖 𝑗



2 (3)

where |Q| is the number of observed interactive edges and 𝑒𝑖 𝑗
is the ground truth edges in the shop-phone interaction graph.
The latent factors of shops and smartphone models are utilized to
construct similarity graphs in Section 4.2.4.

4.2.4 Extract Similarity. We aim to construct similarity graphs
based on the similarity. We measure the similarity by calculat-
ing the euclidean distance between latent factors of shops and be-
tween latent factors of smartphone models, respectively, i.e. 𝑑𝑖𝑠ℎ

𝑖 𝑗
=

| |ℎ𝑖 , ℎ 𝑗 | |2 and 𝑑𝑖𝑠𝑧𝑖 𝑗 = | |𝑧𝑖 , 𝑧 𝑗 | |2. And the shop-shop similarity graph
𝐺𝑠 is generated according to the 𝑑𝑖𝑠ℎ

𝑖 𝑗
. If 𝑑𝑖𝑠ℎ

𝑖 𝑗
<= 𝜖 , there is a simi-

larity edge between shop 𝑢𝑖 and shop 𝑢 𝑗 , where 𝜖 is the distance
threshold that controls the sparsity of the shop-shop similarity
graph. The phone-phone similarity graph 𝐺𝑝 is obtained in the
same way.
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Figure 7: Structure of Parameters Prediction Module.

4.3 Parameters Prediction Module
The parameters prediction module infers the parameters of indoor
status estimation models for target domains based on (1) the similar-
ity between shops’influence patterns and (2) the similarity between
smartphone models’influence patterns, respectively. As shown in
Fig. 7, the input of this module is a shop-phone heterogeneous
graph composed of three sub-graphs: i.e., the shop-shop similarity
graph 𝐺𝑠 , phone-phone similarity graph 𝐺𝑝 and incomplete shop-
phone parameter graph 𝑇 . The output is a complete shop-phone
parameter graph, where we obtain the effective indoor status es-
timation model for the target domain according to the predicted
status estimation model parameters.
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4.3.1 Shop Model. To learn the latent factors ℎ𝑡
𝑖
∈ 𝑅𝑑 for shop 𝑢𝑖 ,

we combine the shop-phone parameter graph and shop-shop simi-
larity graph. The shop-shop similarity graph contains the similar-
ity information between different shops’ influence patterns which
helps us learn the latent factors of shops from a more compre-
hensive perspective. Specifically, We first learn the phone-space
shop embedding ℎ𝑡1

𝑖
by smartphone aggregation from the shop-

phone parameter graph 𝑇 . Then we learn the similarity-space shop
embedding ℎ𝑡2

𝑖
from the shop-shop similarity graph 𝐺𝑠 . Finally,

we combine these two embeddings to obtain the final shop latent
factors ℎ𝑡

𝑖
.

To obtain the phone-space shop embedding ℎ𝑡1
𝑖
, we aggregate

the status estimation model parameter and interaction information
from the set of smartphone models 𝑃 (𝑖) which interact with shop𝑢𝑖 ,
to reflect the shop’s influence pattern from the perspective of indoor
status estimation model parameters. To mathematically represent
this smartphone aggregation, we utilize the following function:

ℎ𝑡1𝑖 = 𝜎 (𝑊 ·


∑︁
𝑎∈𝑃 (𝑖)

𝛾𝑖𝑎𝑞𝑖𝑎

 + 𝑏) (4)

where 𝑞𝑖𝑎 is the parameter-aware smartphone model embedding
which models the interaction and model parameter information
between shop 𝑢𝑖 and smartphone model 𝑣𝑎 . To obtain the 𝑞𝑖𝑎 , we
first introduce a parameter embedding 𝑛𝑖𝑎 to model parameters
between 𝑢𝑖 and 𝑣𝑎 by inputting the edge attribute 𝑒𝑡

𝑖𝑎
to a MLP 𝜑𝑝 ,

i.e., 𝑛𝑖𝑎 = 𝜑𝑝 (𝑒𝑡𝑖𝑎). Then we feed the concatenation of 𝑛𝑖𝑎 and the
smartphone model 𝑣𝑎 ’s attribute 𝑝𝑎 into a MLP 𝜑𝑣 . And 𝑞𝑖𝑎 is de-
fined as 𝑞𝑖𝑎 = 𝜑𝑣 ( [𝑛𝑖𝑎 | |𝑝𝑎]). We design a smartphone attention
𝛾𝑖𝑎 to represent the importance of the interaction with smartphone
model 𝑣𝑎 in contributing to phone-space shop embedding ℎ𝑡1

𝑖
. We

input the parameter-aware smartphone model embedding 𝑞𝑖𝑎 and
shop 𝑢𝑖 ’s attribute 𝑠𝑖 into a one-layer neural network to obtain the
smartphone attention 𝛾𝑖𝑎 , i.e., 𝛾𝑖𝑎 =

𝑒𝑥𝑝 (𝜎 (𝑊 · [𝑞𝑖𝑎 | |𝑠𝑖 ]+𝑏))∑
𝑎∈𝑃 (𝑖 ) 𝑒𝑥𝑝 (𝜎 (𝑊 · [𝑞𝑖𝑎 | |𝑠𝑖 ]+𝑏)) .

Since the influence patterns of shops 𝐶 (𝑖) which are similar
to the shop 𝑢𝑖 ’s help us model the parameter information of the
shop 𝑢𝑖 , we capture the similarity information to learn shop latent
factors. We aggregate the phone-space shop embedding ℎ𝑡1𝑐 of 𝑢𝑖 ’s
similarity neighbor shops 𝐶 (𝑖) to learn the similarity-space shop
embedding ℎ𝑡2

𝑖
, as the follows:

ℎ𝑡2𝑖 = 𝜎 (𝑊 ·


∑︁
𝑐∈𝐶 (𝑖)

𝜇𝑖𝑐ℎ
𝑡1
𝑐

 + 𝑏) (5)

We model the contribution strengths of similarity neighbor shop
nodes by relating the shop similar neighbor attention 𝜇𝑖𝑐 with
ℎ𝑡1𝑐 and shop attribute 𝑠𝑖 , as 𝜇𝑖𝑐 =

𝑒𝑥𝑝 (𝜎 (𝑊 · [ℎ𝑡1𝑐 | |𝑠𝑖 ]+𝑏))∑
𝑐∈𝐶 (𝑖 ) 𝑒𝑥𝑝 (𝜎 (𝑊 · [ℎ𝑡1𝑐 | |𝑠𝑖 ]+𝑏))

.
We consider the shop-phone parameter graph and shop-shop

similarity graph together to obtain the final shop latent factor ℎ𝑡
𝑖

because both graphs provide model parameter information for shop
𝑢𝑖 from different aspects. We input the ℎ𝑡1

𝑖
and ℎ𝑡2

𝑖
to MLP to obtain

the final shop latent factor ℎ𝑡
𝑖
, ℎ𝑡 (𝑘)

𝑖
= 𝜎 (𝑊 (𝑘) · ℎ𝑡 (𝑘−1)

𝑖
+ 𝑏 (𝑘) )

where ℎ𝑡 (0)
𝑖

= [ℎ𝑡1
𝑖
| |ℎ𝑡2

𝑖
].

4.3.2 Smartphone Model. Similar to the shop model, we first learn
the shop-space smartphone model embedding 𝑧𝑡1

𝑗
by aggregating

the interaction and model parameter information from shops 𝑆 ( 𝑗)
which interact with smartphone model 𝑣 𝑗 from shop-phone pa-
rameter graph 𝑇 based on the shop attention 𝜌 . Then we obtain
the similarity-space smartphone model embedding 𝑧𝑡2

𝑗
by aggregat-

ing the shop-space embeddings of similarity neighbor smartphone
models 𝑁 ( 𝑗) that are similar to 𝑣 𝑗 from phone-phone similarity
graph 𝐺𝑝 based on the smartphone similar neighbor attention
𝜏 . Finally 𝑧𝑡1

𝑗
and 𝑧𝑡2

𝑗
are jointly fed into MLP to obtain the final

smartphone model latent factors 𝑧𝑡
𝑗
.

4.3.3 Predict Model Parameters. We utilize the shop latent factor
ℎ𝑡
𝑖
and the smartphone model latent factor 𝑧𝑡

𝑗
to learn effective

model parameters for target domains. We feed the concatenation of
them into MLP to predict missing model parameters 𝑒𝑡

𝑖 𝑗
as follows:

𝑒
𝑡 (𝑘)
𝑖 𝑗

= 𝜎 (𝑊 (𝑘) · 𝑒𝑡 (𝑘−1)
𝑖 𝑗

+ 𝑏 (𝑘) ) (6)

where 𝑒𝑡 (0)
𝑖 𝑗

= [ℎ𝑡
𝑖
| |𝑧𝑡

𝑗
].

Then, to trade off the missing parameter edges prediction task
in shop-phone parameter graph 𝑇 and the status estimation task,
we construct the following two common loss functions:

𝐿𝑝 =
1
|𝑂 |

∑︁
𝑖, 𝑗 ∈𝑂




𝑒𝑡𝑖 𝑗 − 𝑒𝑡𝑖 𝑗





2

(7)

where |𝑂 | is the number of unknown parameter edges between
shops and smartphone models in the training set, 𝑒𝑡

𝑖 𝑗
and 𝑒𝑡

𝑖 𝑗
are

the predicted and ground truth indoor status estimation model
parameters between these shops and smartphonemodels.We utilize
this loss function for the missing parameter edges prediction task.

For the status estimation task, we input the RSSI time series 𝑟𝑖 𝑗
detected by smartphone model 𝑣 𝑗 in shop𝑢𝑖 to the status estimation
model CNN-LSTM consists of 𝑒𝑡

𝑖 𝑗
parameters. So, the predicted sta-

tus probability of 𝑟𝑖 𝑗 can be described as 𝑦′ = 𝐶𝑜𝑛𝑣𝐿𝑆𝑇𝑀 (𝑟𝑖 𝑗 ; 𝑒𝑡𝑖 𝑗 ).
Thus, the loss function for this task is obtained by:

𝐿𝑠 =
1
𝑁

𝑁∑︁
𝑖=1

𝑀∑︁
𝑚=1

−𝑦𝑖𝑚𝑙𝑜𝑔𝑦′𝑖𝑚 (8)

where 𝑦𝑖 is the ground truth status, 𝑁 is the number of series,
𝑀 is the number of status.

Since our ultimate goal is to improve the performance of status
estimation, the overall loss function 𝐿 is derived as: 𝐿 = 𝐿𝑝 + 𝜂𝐿𝑠 ,
where 𝜂 is a trade-off parameter.

4.4 Model Training
To obtain the status estimation model parameters of each source do-
main for shop-phone parameter graph construction and reduce the
training cost, we first utilize all labeled data from source domains
to train a unified status estimation model. Then we utilize the data
of each source domain to fine-tune the CNN layer of the unified
model to obtain the status estimation model parameters for each
source domain. To obtain the similarity graphs, we optimize the
loss function 𝐿𝑟 to learn the shops’ and smartphone models’ latent
factors of the shop-phone interaction graph. Finally, to predict the
missing parameter edges that are effective for the status estimation
task, we optimize the loss function 𝐿 to jointly train the parameter
edge prediction task and status estimation task. We adopt Adam
as the optimizer in our training process. To prevent overfitting, we
apply the dropout strategy to our model.
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5 EVALUATION
5.1 Experiment Setup
5.1.1 Data Collected.
aBeacon Monitoring Data: The aBeacon monitoring dataset in-
cludes 64 million delivery orders involved with 109,378 couriers
with 672 smartphone models in 12,109 merchants in Shanghai. The
period of this dataset is from 2019.07.01 to 2020.10.31. Due to the
agreement with the on-demand delivery services company, we are
able to show the evaluation results in a sub-region of Shanghai (i.e.,
6km × 6km) including 269 active couriers with 143 smartphone
models, 187 active merchants, and around 4341 delivery orders on
each day in four months.
Courier Report Data: For each delivery order, the report data
record the time of four major status, i.e., accepting an order, arrival
at the merchant, departure from the merchant (with the order),
and final delivery to the customer. We obtain the status of couriers
because these timestamps are uploaded by courier smartphone apps.
The primary attribute, detailed information of the dataset and the
explanation of ground truth are shown in Appendix A.2.
5.1.2 Parameter Settings. We implement our method and baselines
with Pytorch 1.3.1 in Python 3.7.5 environment and train these
with 16 GB memory and Tesla V100-SXM2 GPU. The four-month
aBeacon monitoring data are divided into four months, we utilize
the first three months’ data to train our model and the last month’s
data as the evaluation. How to determine various parameters in
our model is discussed in Appendix A.3.
5.1.3 Baselines. In order to prove the superiority of our method,
we compare it with following classic and state-of-the-art methods.
• SVM [24]: This model utilizes the support vector machine as
the classifier, we extract the time-domain features including mean,
standard deviation, skewness, kurtosis, max, min, shape factor and
the frequency-domain features including FFT Peaks, energy, and
domain-frequency.
• C-LSTM [32]: This method discovers deep features from time
series for status estimation without extracting features manually.
• CrossSense [34]: This method proposes a roaming model based
on machine learning to transform the signal features from source
domains to target domains and adopts multiple expert models for
recognition.
• EUI [33]: This method contains two domain discriminators to
classify the user or the position of the gesture with a multi-task
optimization in the environment and user invariant training via
adversarial learning. In our problem, we convert to design the
environment and smartphone model domain discriminators.
• GraphSage [13]: This is a graph method, which transfers infor-
mation through the edge without using the attributes of nodes
and edges to attend neighbor nodes. We use this method to learn
the shop-phone parameter graph for the status estimation model
parameter prediction.

5.2 Result Analysis
5.2.1 Overall performance. We compare our work with the above
baselines, and the average results of accuracy, recall, precision, and
F1-score of arrival and departure status are shown in Table 1. We
observe that our method has the best overall performance compared
with other methods. In addition, our method does not need extra

Table 1: Overall performance
Model SVM C-LSTM CrossSense EUI GraphSage Our Model

Accuracy 65.56% 72.82% 77.93% 81.75% 80.88% 93.62%*

Recall 62.79% 71.46% 79.93% 80.66% 82.22% 95.20%*

Precision 63.56% 73.64% 76.86% 80.94% 77.71% 91.27%*

F1-score 64.88% 72.11% 75.71% 79.90% 77.66% 92.17%*

* the result is significant according to T-test at level 0.01 compared to EUI.

data re-collection and model retraining when facing new target
domains. Para-Pred achieves more than 17% higher precision and
F1-score than the classic baselines(i.e., SVM and C-LSTM), because
we consider the impact of the heterogeneities. The average accuracy
and recall of Para-Pred are 93.62%, and 95.20%, respectively, which
advantage the EUI by 11.87% and 14.54%. Then, the advantage of
our Para-Pred over GraphSage validates the effectiveness of our
aggregation method and attention mechanisms. We also conduct a
t-test to show that our results are statistically significant with the
p-value < 0.01 compared to the best baseline EUI.
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Figure 8: Significance of Similarity Extraction Module.

5.2.2 Significance of Similarity extraction module. This section
analyzes the importance of the similarity learned by the similarity
extraction module for system performance.
The analysis of w/ and w/o the similarity between environ-
mental influence patterns.To illustrate the importance of the
similarity between environmental influence patterns learned by the
environment heterogeneity model for our model performance, we
compare our model with two variants. They are defined as: (1) w/o
Shop Sim: We remove the shop-shop similarity graph from the
parameter prediction module. In this variant, we simply learn the
shop latent factors ℎ𝑝

𝑖
from the shop-phone parameter graph. (2)

w/ Kmeans Shop Sim: We adopt Kmeans, a traditional clustering
method, to cluster the raw sensor data and connect shops in the
same class to construct a new simple shop-shop similarity graph
instead of the shop-shop similarity graph learned by our similarity
extraction module.

The comparison results are shown in Fig. 8a, the average ac-
curacy and recall of arrival and departure status of our method
are higher than 93.0% and 94.3% severally, which is better than
these two variants. The w/o Shop Sim method performing worst
proves the importance of the similarity information between in-
fluence patterns of shops. Our Para-Pred performing better than
the w/ Kmeans Shop Sim method proves the advantage of our envi-
ronment heterogeneity model which learns influence patterns of
environments and obtains the effective similarity information by
considering the interaction information contained in sensor data.
The analysis of w/ and w/o the similarity between smart-
phone influence patterns. Similarly, to intuitively show how
the similarity between smartphone influence patterns learned by
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Figure 9: The importance of at-
tention mechanisms.
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Figure 10: The performance of
different environments.

the smartphone model heterogeneity model affects our model per-
formance, we evaluate our model and two variants, w/o Phone
Sim and w/ Kmeans Phone Sim which are defined in Appen-
dix A.4. Fig. 8b shows that our Para-Pred performs best, it proves
that the smartphone heterogeneity model extracts effective smart-
phone model influence patterns and the similarity information is
important to improve the performance of final status estimation.

To sum up, the similarity extraction module learns the influ-
ence patterns of heterogeneities and the similarity information
effectively and improves the overall performance of our system.

5.2.3 The importance of attention mechanisms. In the parameter
prediction module, we design the attention mechanisms based on
the edge and node attributes to aggregate features of neighbors.
This module involves four different attention mechanisms, includ-
ing shop attention 𝜌 , smartphone similar neighbor attention 𝜏 ,
smartphone attention 𝛾 , and shop similar neighbor attention 𝜇.
To study the impact of different attention mechanisms on system
performance, we compare the performance of four variants (i.e.,
ParaPred-𝜌 , ParaPred-𝜏 , ParaPred-𝛾 and ParaPred-𝜇) which all use
mean aggregation instead of aggregation based on our four atten-
tion mechanisms, respectively.

The results in Fig. 9 show that removing any attention mech-
anism leads to the final performance degradation. The attention
mechanisms of our model efficiently distinguish the different contri-
butions of different neighbors and improve the system performance.

5.2.4 Impact of Environment Diversity. The purpose of this section
is to study the impact of different environment types on the perfor-
mance of Para-Pred. Taking the arrival estimation as an example,
we select the samples detected by the same smartphone in five
different types (fried chicken, breakfast, milk tea, light meal, and
snack bar) of shops for testing. These five types are common in daily
life and have different environmental characteristics. As shown in
Fig. 10, the performance of different shop types is slightly different,
the average accuracy is more than 91% and the average recall is
more than 89% in all types of shops. In general, our framework is
robust for different environment types.

5.2.5 Impact of Smartphone Diversity. To verify the performance
of Para-Pred in different smartphone models, we test our model
with the data detected by eight different smartphone models under
two well-known brands (HUAWEI and iPhone) in the same shop for
arrival estimation. The abscissa in Fig. 11 is sorted by the release
time of smartphones from the same brand, and the results show
that iPhone 12,1 has the highest average accuracy and recall of
98.20% and 99.09%, respectively. We find for smartphone models
from the same brand, the newer the smartphone, the better the
average performance. In a nutshell, our model performs well for
different smartphone models.
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Figure 11: The performance of
different smartphone models.
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Figure 12: Results for Different
Model Structures.

5.2.6 Comparison of Different Status Estimation Model Structures.
As shown in Fig. 12, compared with the simple LSTM model, the
average accuracy and recall of CNN-LSTM structure are improved
by around 5% and 7%, respectively. Because the convolution layer
can extract high-level spatial features from raw Bluetooth signals.
Moreover, we analyze the effect of the number of neural network
layers on our model performance. We test two convolutional layers
CNN-LSTM model and two LSTM layers CNN-LSTM model. The
results show that increasing the number of layers does not further
improve the performance. Therefore, considering the trade-off be-
tween the training time and performance, we choose CNN-LSTM
as our indoor status estimation model.

6 DISCUSSION
In designing and building the system, we have some lessons learned
on the effectiveness of graph learning in solving the sensing hetero-
geneity problem and the generalizability of the solution. A detailed
discussion can be found in Appebdix B.

7 RELATEDWORK
7.1 Cross-domain Learning Methods
The research on how to improve the cross-domain generalization
ability of the recognition framework fall into two categories: one is
the method based on data conversion [18, 26, 34], and the other is
the method based on adversarial learning [15, 33]. The main idea of
the former is to learn how to transform the data features collected
from one domain into the data features of other domains for the
recognition model training. For example, CrossSense [34] learns a
roaming model that transforms data features for each target domain
and uses the generated data features for downstream tasks training.

The latter type uses the idea of adversarial learning to extract
features irrelevant to the environment or user for recognition. For
example, RFID [33] designs two domain discriminators to classify
the user who performs this gesture or positions where the ges-
ture is executed to extracts features irrelevant to the environments
and users. However, when a new target domain appears, all these
methods require re-collecting new data under limited conditions
and model retraining, which are not efficient for large-scale sce-
narios. Our method infers the status estimation model for the new
target domain according to the similarity between heterogeneities
learned by the similarity extraction module without additional data
collection and model retraining.

7.2 Graph Embedding based on GNN
The purpose of graph embedding is to map graph data into low
dimensional dense vectors. It captures the topology of the graph, the
relationship between vertices, and other related information. The
graph neural network (GNN) model first appeared in [20], it extends
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the existing traditional neural network model and can be used to
process data with arbitrary graph structure. Since GNNS effectively
learn on graph structure data, there are several advanced graph
embedding methods based on GNN. GraphSage [13] learns the
nodes embeddings by aggregating information from neighbors in an
inductive manner. Graph autoencoder (GAE) and variational graph
autoencoder (VGAE) [16] use graph convolution network (GCN)
encoder and simple inner product decoder to learn node embedding
by minimizing the reconstruction error of adjacency matrix while
considering graph structure and node feature information. [27] [12]
further introduce the attention mechanism to learn the importance
weights of neighbor nodes and the edge content. In our method, we
incorporate the node and edge attributes and utilize convolutional
network and attention mechanisms to fully explore the features.

7.3 RSSI-based Sensing
Received Signal Strength Indication (RSSI) can be used to identify
human activities [4, 21]. For example, in-air hand gestures around
the user’s mobile device can be recognized by analyzing the change
of WiFi signal strength [4]. In recent years, the number of smart-
phones and devices equipped with BLE functions has increased.
Therefore, many BLE sensing systems have been proposed. For
example, [30] applies the idea of global map matching to route
estimation based on BLE beacons. Given the known mapping of
the BLE beacons and the couriers’ smartphones, a straightforward
solution is to mark the courier as ‘arrival’ when (s)he first scans
the beacon. However, it is inaccurate and a detailed explanation
can be found in Appendix A.5.

8 CONCLUSION
In this work, we propose Para-Pred, an city-wide indoor status
estimation system based on the similarity information to address
environment and smartphone heterogeneities with thousands of
merchants and hundreds of smartphone models. We design the simi-
larity extraction module to explore the similarity between influence
patterns of heterogeneities, xian zxi an zaand the parameters pre-
diction module to infer the effective status estimation model for the
new target domain based on the learned similarity information. We
evaluate our method on a real-world dataset from an on-demand
delivery company. The experiment results show that the average
status estimation accuracy and recall of our method outperforms
other state-of-the-art methods by 11.87% and 14.54%, respectively.
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A APPENDIX
A.1 Mathematical Notations
The mathematical notations used in this paper are listed in Table 2.

A.2 Data Collect
A.2.1 Data Interpretation, Privacy, and Data Release. We visualize
the actual deployment of aBeaconas Fig. 13. Every time an aBeacon
device broadcast is received by a courier’s smartphone, we record
the information of the aBeacon device, smartphone, and the Re-
ceived Signal Strength Index (RSSI) of the broadcast. The primary
attribute and detailed information of the aBeacon Monitoring Data
and the Courier Report Data are shown in Table 3 and Table 4,
respectively. The aBeacon monitoring data and courier report data
utilized in our work are collected under the consent agreement of
couriers by our platforms. All data are anonymized, and any ID
information cannot be tracked or identified in practice. Moreover,
our data does not involve the couriers’ personal information, e.g.,
age, gender, income, to protect the privacy of couriers. We will
release one month of our data collected in aBeacon platform for
the research community to validate our results and conduct further
research.

© CARTO
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Figure 13: Beacon device heatmaps in Shanghai.

A.2.2 Ground Truth. We follow the idea in [31] that (1) most couri-
ers’ outdoor/indoor reporting behaviors are intrinsically consistent
under certain context, i.e., if a courier has accurate reporting be-
havior at outside-merchants, (s)he generally has accurate reporting
behavior at inside-merchants, and (2) the distance between the
courier and merchant obtained from the historical GPS trajectories
follows a common trend during pickup time, i.e., changes from

Table 3: aBeacon Monitoring Data

Attribute Example

Courier ID C_000001

Timestamp 2019/07/15 12:30:23

Device ID Tuple (UUID, Major, Minor)

Merchant ID M_000001

RSSI -70dB

Phone ID D_000001

Phone Brand/OS Apple/iOS

Phone Model iPhone X

Table 4: Courier Report Data

Attribute Example

Courier ID C_000001

Timestamp 2019/07/15 12:30:23

Merchant ID M_000001

Order ID O_000001

Report Type Acceptance/Arrival/ Departure/Delivery

decreasing to increasing, where the shortest distance in the trend
corresponds to the arrival time. In this way, we define a order as
a reliable orders if the absolute difference between the arrival
time reported by the courier at outside-merchant and the arrival
time obtained by the GPS trajectory is less than 1s. And the courier
whose reliable orders account for more than 90% of his total orders
is defined as the reliable courier. We collect the arrival (departure)
time reported by reliable couriers as the ground truth.

A.3 Parameter Selection
For the shop-phone interaction graph and parameter graph, we
randomly split the edges into 5 folds for cross-validation in all
the reported experiments involving graph learning. In the status
estimation model, the CNN layer contains a convolution kernel
of size 4, stride 1, and ReLU activation function. The LSTM layer
contains 12 hidden cells, and the fully connected layer has 8 hidden
cells. In the similarity extraction module and parameter prediction

Table 2: Mathematical Notations

Notations Definitions Notations Definitions

𝑟𝑙 The lth time series of RSSI received by smartphone 𝑣𝑗
from shop 𝑢𝑖

𝑒𝑖 𝑗 The interactive edge attribute of smartphone 𝑣𝑗 in shop 𝑢𝑖

𝑠𝑖 The shop 𝑢𝑖 ’s attribute 𝑝 𝑗 The smartphone 𝑣𝑗 ’s attribute

𝑃 (𝑖) The set of smartphones which shop 𝑢𝑖 interacted with 𝑆 ( 𝑗) The set of shops which smartphone 𝑣𝑗 interacted with

ℎ𝑖 The latent factor of shop 𝑢𝑖 𝑧 𝑗 The latent factor of smartphone 𝑣𝑗
𝛼𝑖𝑥 The smartphone attention of smartphone 𝑣𝑥 in

contribution to ℎ𝑖
𝛽 𝑗𝑜 The shop attention of shop 𝑢𝑜 in contribution to 𝑧 𝑗

𝑒𝑡
𝑖,𝑗

The parameter edge attribute between smartphone 𝑣𝑗 and
shop 𝑢𝑖

𝐶 (𝑖) The set of shops which shop 𝑢𝑖 similar to

𝑁 ( 𝑗) The set of smartphones which smartphone 𝑣𝑗 similar to ℎ𝑡
𝑖

The latent factor of shop 𝑢𝑖 of shop-phone parameter
graph

𝑧𝑡
𝑗

The latent factor of smartphone 𝑣𝑗 of shop-phone
parameter graph

𝑒𝑡
𝑖 𝑗

The predicted status estimation model parameters for
smartphone 𝑣𝑗 in shop 𝑢𝑖
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module, the embedding dimension of all graphs is 32, the similarity
threshold 𝜖 is 0.2, and the trade-off parameter 𝜂 is 1. We check how
these two parameters affect Para-Pred performance in Appendix
A.2.1. We use Adam optimizer in the training process, the learning
rate is 0.0001. The activation function of the network layer is ReLU.
To prevent overfitting, we add one BatchNorm layer after the fully
connected layer in our graph model.
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Figure 14: Parameter sensitivity
of different thresholds.
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Figure 15: Impact on embed-
ding dimension.

A.3.1 Parameter Study. This section studies the influence of dis-
tance threshold 𝜖 and the embedding dimensions on the system
performance. The distance threshold 𝜖 determines the sparsity of
similarity graphs. As shown in Fig. 14, we analyze the change of
system performance when the distance threshold 𝜖 increases from
0 to 1. The best distance threshold is 0.2.

Then we analyze the impact of the embedding dimension on
the system performance. Fig. 15 shows the performance compar-
ison. Generally, with the increase of embedding dimension, the
performance first increases and then decreases. When the embed-
ding dimension increases from 8 to 32, the performance is signif-
icantly improved. And when the embedding dimension is 64, the
performance of the model decreases. It shows that the larger the
embedding dimension is, the stronger the ability of information
expression is. When the dimension is too great, the vector will be
sparse, and the complexity of the model will be improved. Consider-
ing the trade-off between accuracy and computational complexity,
we select 32 as the default setting of the embedding dimension in
our algorithm.

A.4 The definition of w/o Phone Sim and w/
Kmeans Phone Sim

(1) w/o Phone Sim: We remove the phone-phone similarity graph
from the parameter prediction module and the smartphone latent
factors are learned only from the shop-phone parameter graph. (2)
w/ Kmeans Phone Sim: We cluster the raw sensor data based on
Kmeans, and connect smartphones in the same class to construct
a new phone-phone similarity graph instead of learning from the
similarity extraction module.

A.5 Why straightforward solutions for status
estimation do not work.

Given the known mapping of the BLE beacons and the couriers’
smartphones, a straightforward solution is to mark the courier
as ‘arrival’ when (s)he first scans the beacon. However, it is inac-
curate because it will lead to false positive (e.g., passing by but
detected as arrival) and false negative (e.g., arrival but detected
late due to improper deployment). For example, if two merchants

are located close to each other, a courier may receive ID tuples
from multiple merchants’ beacons at the same time, and when the
beacon is deployed too close to the door, the ID tuple is received
even if the courier does not arrive at the merchant. Therefore, we
should make full use of the information of the Bluetooth signal
strength received by the couriers over time to detect arrival and
departure status accurately. The existing BLE-based studies do not
consider the impact of heterogeneities on recognition performance
in large-scale deployment. Our work effectively alleviates the influ-
ence of heterogeneities and improves the indoor status estimation
performance.

B DETAILED DISCUSSION
B.1 Lesson Learned
(1) We analyze the influence patterns of the environment and smart-
phone heterogeneities and find that there is similarity information
in them as shown in Fig. 3 and Fig. 4. (2) The similarity informa-
tion is important for predicting effective indoor status estimation
models for target domains (i.e., Section 5.2.2). (3) Graph learning
works well for addressing the heterogeneities in large-scale indoor
status estimation since the influence patterns of heterogeneities
and the similarity information can be effectively learned and repre-
sented. (4) The evaluation results show that our method alleviates
the heterogeneities effectively for indoor status estimation in large-
scale scenarios (Table 1). We also find that our method is robust for
different types of environments (Fig. 10), and the release time of
smartphone models from the same brand has a positive impact on
system performance (Fig. 11).

B.2 Generalizability
Although Para-Pred is designed for on-demand delivery, we believe
the underlying ideas of addressing the impact of heterogeneities
on sensing data can be generalized to other BLE scenarios, such
as interaction in museums[3], airports[1], and TraceTogether[2].
For example, in airports[1], passengers receive tailored information
as they arrive at the lounge or retail areas. In this scenario, Blue-
tooth signals detected by different smartphones are input to the
similarity extraction module to learn the similarity between the
effects of heterogeneities. The parameter prediction module pre-
dicts the status estimation model parameters for new scenarios. We
believe Para-Pred with some modifications is a potential solution
to mitigate the heterogeneity effects in these application scenarios,
which provides more accurate status estimation and better services
to users.
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